
SQL Antipatterns
Strike Back

Bill Karwin

1

1Monday, April 20, 2009

Antipattern Categories

Database Design
Antipatterns

Database Creation
Antipatterns

Query
Antipatterns

Application
Antipatterns

CREATE TABLE BugsProducts (
 bug_id INTEGER REFERENCES Bugs,
 product VARCHAR(100) REFERENCES Products,
 PRIMARY KEY (bug_id, product)
);

SELECT b.product, COUNT(*)
FROM BugsProducts AS b
GROUP BY b.product;

$dbHandle = new PDO(‘mysql:dbname=test’);
$stmt = $dbHandle->prepare($sql);
$result = $stmt->fetchAll();

2

2Monday, April 20, 2009

Antipattern Categories

Database Design
Antipatterns

Database Creation
Antipatterns

Query
Antipatterns

Application
Antipatterns

CREATE TABLE BugsProducts (
 bug_id INTEGER REFERENCES Bugs,
 product VARCHAR(100) REFERENCES Products,
 PRIMARY KEY (bug_id, product)
);

SELECT b.product, COUNT(*)
FROM BugsProducts AS b
GROUP BY b.product;

$dbHandle = new PDO(‘mysql:dbname=test’);
$stmt = $dbHandle->prepare($sql);
$result = $stmt->fetchAll();

3

3Monday, April 20, 2009

Database Design Antipatterns

1. Metadata Tribbles

2. Entity-Attribute-Value

3. Polymorphic Associations

4. Naive Trees

4

4Monday, April 20, 2009

Metadata Tribbles

5

I want these things off the ship. I don’t care if it takes
every last man we’ve got, I want them off the ship.

— James T. Kirk

5Monday, April 20, 2009

Metadata Tribbles

• Objective: improve performance
of a very large table.

6

6Monday, April 20, 2009

Metadata Tribbles

• Antipattern: separate into many tables
with similar structure

• Separate tables per distinct value in attribute

• e.g., per year, per month, per user,
per postal code, etc.

7

7Monday, April 20, 2009

Metadata Tribbles

• Must create a new table for each new value

CREATE TABLE Bugs_2005 (. . .);

CREATE TABLE Bugs_2006 (. . .);

CREATE TABLE Bugs_2007 (. . .);

CREATE TABLE Bugs_2008 (. . .);

. . .

8

mixing data
with metadata

8Monday, April 20, 2009

Metadata Tribbles

• Automatic primary keys cause conflicts:

CREATE TABLE Bugs_2005 (bug_id SERIAL . . .);

CREATE TABLE Bugs_2006 (bug_id SERIAL . . .);

CREATE TABLE Bugs_2007 (bug_id SERIAL . . .);

CREATE TABLE Bugs_2008 (bug_id SERIAL . . .);

. . .

9

same values allocated
in multiple tables

9Monday, April 20, 2009

Metadata Tribbles

• Difficult to query across tables

SELECT b.status, COUNT(*) AS count_per_status
FROM (
 SELECT * FROM Bugs_2009
 UNION
 SELECT * FROM Bugs_2008
 UNION
 SELECT * FROM Bugs_2007
 UNION
 SELECT * FROM Bugs_2006) AS b
GROUP BY b.status;

10

10Monday, April 20, 2009

Metadata Tribbles

• Table structures are not kept in sync

ALTER TABLE Bugs_2009
 ADD COLUMN hours NUMERIC;

• Prior tables don’t contain new column

• Dissimilar tables can’t be combined with UNION

11

11Monday, April 20, 2009

Metadata Tribbles

• Solution #1: use horizontal partitioning

• Physically split, while logically whole

• MySQL 5.1 supports partitioning

BUGS

BUGS
(2007)

BUGS
(2008)

BUGS
(2009)

12

12Monday, April 20, 2009

• Solution #2: use vertical partitioning

• Move bulky and seldom-used columns to a
second table in one-to-one relationship

Metadata Tribbles

INSTALLERS

(1 .. 1)
PRODUCTS

13

13Monday, April 20, 2009

Metadata Tribbles

• Columns can also be tribbles:

CREATE TABLE Bugs (
 bug_id SERIAL PRIMARY KEY,
 . . .
 product_id1 BIGINT,
 product_id2 BIGINT,
 product_id3 BIGINT
);

14

14Monday, April 20, 2009

Metadata Tribbles

• Solution #3: add a dependent table

CREATE TABLE BugsProducts (
 bug_id BIGINT REFERENCES bugs,
 product_id BIGINT REFERENCES products,
 PRIMARY KEY (bug_id, product_id)
);

15

BUGS
(1 .. *) BUGS

PRODUCTS

15Monday, April 20, 2009

Entity-Attribute-Value

16

If you try and take a cat apart to see how it works,
the first thing you have on your hands is a non-working cat.

— Richard Dawkins

16Monday, April 20, 2009

Entity-Attribute-Value

• Objective: make a table with a variable
set of attributes

bug_id bug_type priority description severity sponsor

1234 BUG high
crashes when

saving
loss of

functionality

3456 FEATURE low support XML Acme Corp.

17

17Monday, April 20, 2009

Entity-Attribute-Value

• Antipattern: store all attributes in a
second table, one attribute per row

CREATE TABLE eav (
 bug_id BIGINT NOT NULL,
 attr_name VARCHAR(20) NOT NULL,
 attr_value VARCHAR(100),
 PRIMARY KEY (bug_id, attr_name),
 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id)
);

mixing data
with metadata

18

18Monday, April 20, 2009

Entity-Attribute-Value

bug_id attr_name attr_value

1234 priority high

1234 description crashes when saving

1234 severity loss of functionality

3456 priority low

3456 description support XML

3456 sponsor Acme Corp.

19

19Monday, April 20, 2009

Entity-Attribute-Value

• Difficult to rely on attribute names

bug_id attr_name attr_value

1234 created 2008-04-01

3456 created_date 2008-04-01

20

20Monday, April 20, 2009

Entity-Attribute-Value

• Difficult to enforce data type integrity

bug_id attr_name attr_value

1234 created_date 2008-02-31

3456 created_date banana

21

21Monday, April 20, 2009

Entity-Attribute-Value

• Difficult to enforce mandatory attributes
(i.e. NOT NULL)

• SQL constraints apply to columns, not rows

• No way to declare that a row must exist with a
certain attr_name value (‘created_date’)

• Maybe create a trigger on INSERT for bugs?

22

22Monday, April 20, 2009

Entity-Attribute-Value

• Difficult to enforce referential integrity for
attribute values

• Constraints apply to all rows in the column, not
selected rows depending on value in attr_name

bug_id attr_name attr_value

1234 priority new

3456 priority fixed

5678 priority banana

23

23Monday, April 20, 2009

Entity-Attribute-Value

• Difficult to reconstruct a row of attributes:
SELECT b.bug_id,
 e1.attr_value AS created_date,
 e2.attr_value AS priority,
 e3.attr_value AS description,
 e4.attr_value AS status,
 e5.attr_value AS reported_by
FROM Bugs b
LEFT JOIN eav e1 ON (b.bug_id = e1.bug_id AND e1.attr_name = ‘created_date’)
LEFT JOIN eav e2 ON (b.bug_id = e2.bug_id AND e2.attr_name = ‘priority’)
LEFT JOIN eav e3 ON (b.bug_id = e3.bug_id AND e3.attr_name = ‘description’)
LEFT JOIN eav e4 ON (b.bug_id = e4.bug_id AND e4.attr_name = ‘status’)
LEFT JOIN eav e5 ON (b.bug_id = e5.bug_id AND e5.attr_name = ‘reported_by’);

bug_id created_date priority description status reported_by

1234 2008-04-01 high Crashes when I save. NEW Bill

24

need one JOIN
per attribute

24Monday, April 20, 2009

Entity-Attribute-Value

• Solution: use metadata for metadata

• Define attributes in columns

• ALTER TABLE to add attribute columns

• Define related tables for related types

25

25Monday, April 20, 2009

Entity-Attribute-Value

• Solution #1: Single Table Inheritance

• One table with many columns

• Columns are NULL when inapplicable

CREATE TABLE Issues (
 issue_id SERIAL PRIMARY KEY,
 created_date DATE NOT NULL,
 priority VARCHAR(20),
 description TEXT,
 issue_type CHAR(1) CHECK (issue_type IN (‘B’, ‘F’)),
 bug_severity VARCHAR(20),
 feature_sponsor VARCHAR(100)
);

26

26Monday, April 20, 2009

Entity-Attribute-Value

• Solution #2: Concrete Table Inheritance

• Define similar tables for similar types

• Duplicate common columns in each table

CREATE TABLE Features (
 bug_id SERIAL PRIMARY KEY,
 created_dateDATE NOT NULL,
 priority VARCHAR(20),
 description TEXT,
 sponsor VARCHAR(100)
);

CREATE TABLE Bugs (
 bug_id SERIAL PRIMARY KEY,
 created_dateDATE NOT NULL,
 priority VARCHAR(20),
 description TEXT,
 severity VARCHAR(20)
);

27

27Monday, April 20, 2009

Entity-Attribute-Value

• Solution #2: Concrete Table Inheritance

• Use UNION to search both tables:

SELECT * FROM (
 SELECT issue_id, description FROM Bugs
 UNION ALL
 SELECT issue_id, description FROM Features
) unified_table
WHERE description LIKE ...

28

28Monday, April 20, 2009

Entity-Attribute-Value

• Solution #3: Class Table Inheritance

• Common columns in base table

• Subtype-specific columns in subtype tables

CREATE TABLE Features (
 issue_id BIGINT PRIMARY KEY,
 sponsor VARCHAR(100),
 FOREIGN KEY (issue_id)
 REFERENCES Issues (issue_id)
);

CREATE TABLE Bugs (
 issue_id BIGINT PRIMARY KEY,
 severity VARCHAR(20),
 FOREIGN KEY (issue_id)
 REFERENCES Issues (issue_id)
);

CREATE TABLE Issues (
 issue_id SERIAL PRIMARY KEY,
 created_dateDATE NOT NULL
 priority VARCHAR(20),
 description TEXT
);

29

29Monday, April 20, 2009

Entity-Attribute-Value

• Solution #3: Class Table Inheritance

• Easy to query common columns:

SELECT * FROM Issues
WHERE description LIKE ...

• Easy to query one subtype at a time:

SELECT * FROM Issues
JOIN Bugs USING (issue_id);

30

30Monday, April 20, 2009

Entity-Attribute-Value

• Appropriate usage of EAV:

• If attributes must be fully flexible and dynamic

• You must enforce constraints in application code

• Don’t try to fetch one object in a single row

• Consider non-relational solutions
for semi-structured data, e.g. RDF/XML

31

31Monday, April 20, 2009

Polymorphic Associations

32

Of course, some people do go both ways.
 — The Scarecrow

32Monday, April 20, 2009

Polymorphic Assocations

• Objective: reference multiple parents

33

BUGS

COMMENTS

FEATURES

33Monday, April 20, 2009

Polymorphic Assocations

• Can’t make a FOREIGN KEY constraint
reference two tables:

CREATE TABLE Comments (
 comment_id SERIAL PRIMARY KEY,
 comment TEXT NOT NULL,
 issue_type VARCHAR(15) CHECK
 (issue_type IN (‘Bugs’, ‘Features’)),
 issue_id BIGINT NOT NULL,
 FOREIGN KEY issue_id REFERENCES
);

34

you need this to be
Bugs or Features

34Monday, April 20, 2009

Polymorphic Assocations

• Instead, you have to define table with no
FOREIGN KEY or referential integrity:

CREATE TABLE Comments (
 comment_id SERIAL PRIMARY KEY,
 comment TEXT NOT NULL,
 issue_type VARCHAR(15) CHECK
 (issue_type IN (‘Bugs’, ‘Features’)),
 issue_id BIGINT NOT NULL
);

35

35Monday, April 20, 2009

Polymorphic Assocations

36

comment_id comment issue_type
c.

issue_id
b.

issue_id
f.

issue_id

6789 “It crashes” Bug 1234 1234 NULL

9876
“Great
idea!”

Feature 2345 NULL 2345

comment
id

comment issue_type issue_id

6789 “It crashes” Bugs 1234

9876 “Great idea!” Features 2345

issue_id

. . .

2345

issue_id

. . .

1234

Bugs FeaturesComments

Query result:

36Monday, April 20, 2009

Polymorphic Assocations

• You can’t use a different table for each row.
You must name all tables explicitly.

SELECT * FROM Comments
JOIN USING (issue_id);

37

you need this to be
Bugs or Features

37Monday, April 20, 2009

Polymorphic Assocations

• Instead, join to each parent table:

SELECT *
FROM Comments c
LEFT JOIN Bugs b ON (c.issue_type = ‘Bugs’
 AND c.issue_id = b.issue_id)
LEFT JOIN Features f ON (c.issue_type = ‘Features’
 AND c.issue_id = f.issue_id);

38

you have to get
these strings right

38Monday, April 20, 2009

Polymorphic Assocations

• Solution #1: exclusive arcs

CREATE TABLE Comments (
 comment_id SERIAL PRIMARY KEY,
 comment TEXT NOT NULL,
 bug_id BIGINT,
 feature_id BIGINT,
 FOREIGN KEY bug_id
 REFERENCES Bugs(bug_id)
 FOREIGN KEY feature_id
 REFERENCES Features(feature_id)
);

39

both columns are nullable;
exactly one must be non-null

39Monday, April 20, 2009

Polymorphic Assocations

• Solution #1: exclusive arcs

• Referential integrity is enforced

• But hard to make sure exactly one is non-null

• Queries are easier:

SELECT * FROM Comments c
LEFT JOIN Bugs b USING (bug_id)
LEFT JOIN Features f USING (feature_id);

40

40Monday, April 20, 2009

• Solution #2: reverse the relationship

Polymorphic Assocations

41

BUGS

FEATURES
FEATURES

COMMENTS

BUGS
COMMENTS

COMMENTS

41Monday, April 20, 2009

Polymorphic Assocations

• Solution #2: reverse the relationship
CREATE TABLE BugsComments (
 comment_id BIGINT NOT NULL,
 bug_id BIGINT NOT NULL,
 PRIMARY KEY (comment_id),
 FOREIGN KEY (comment_id) REFERENCES Comments(comment_id),
 FOREIGN KEY (bug_id) REFERENCES Bugs(bug_id)
);

CREATE TABLE FeaturesComments (
 comment_id BIGINT NOT NULL,
 feature_id BIGINT NOT NULL,
 PRIMARY KEY (comment_id),
 FOREIGN KEY (comment_id) REFERENCES Comments(comment_id),
 FOREIGN KEY (feature_id) REFERENCES Features(feature_id)
);

42

42Monday, April 20, 2009

Polymorphic Assocations

• Solution #2: reverse the relationship

• Referential integrity is enforced

• Query comments for a given bug:
SELECT * FROM BugsComments b
JOIN Comments c USING (comment_id)
WHERE b.bug_id = 1234;

• Query bug/feature for a given comment:
SELECT * FROM Comments
LEFT JOIN (BugsComments JOIN Bugs USING (bug_id))
 USING (comment_id)
LEFT JOIN (FeaturesComments JOIN Features USING (feature_id))
 USING (comment_id)
WHERE comment_id = 9876;

43

43Monday, April 20, 2009

• Solution #3: use a base parent table

Polymorphic Assocations

44

FEATURESBUGS

COMMENTS

ISSUES

44Monday, April 20, 2009

Polymorphic Assocations

• Solution #3: use a base parent table
CREATE TABLE Issues (
 issue_id SERIAL PRIMARY KEY
);

CREATE TABLE Bugs (
 issue_id BIGINT PRIMARY KEY,
 . . .
 FOREIGN KEY (issue_id) REFERENCES Issues(issue_id)
);

CREATE TABLE Comments (
 comment_id SERIAL PRIMARY KEY,
 comment TEXT NOT NULL,
 issue_id BIGINT NOT NULL,
 FOREIGN KEY (issue_id) REFRENCES Issues(issue_id)
);

45

45Monday, April 20, 2009

Polymorphic Assocations

• Solution #3: use a base parent table

• Referential integrity is enforced

• Queries are easier:

SELECT * FROM Comments
JOIN Issues USING (issue_id)
LEFT JOIN Bugs USING (issue_id)
LEFT JOIN Features USING (issue_id);

46

46Monday, April 20, 2009

Polymorphic Assocations

• Enforcing disjoint subtypes:
CREATE TABLE Issues (
 issue_id SERIAL PRIMARY KEY,
 issue_type CHAR(1) NOT NULL CHECK (issue_type IN (‘B’, ‘F’)),
 UNIQUE KEY (issue_id, issue_type)
);

CREATE TABLE Bugs (
 issue_id BIGINT PRIMARY KEY,
 issue_type CHAR(1) NOT NULL CHECK (issue_type = ‘B’),
 . . .
 FOREIGN KEY (issue_id, issue_type)
 REFERENCES Issues(issue_id, issue_type)
);

47

referential integrity

47Monday, April 20, 2009

Naive Trees

48

48Monday, April 20, 2009

Naive Trees

• Objective: store/query hierarchical data

• Categories/subcategories

• Bill of materials

• Threaded discussions

49

49Monday, April 20, 2009

Naive Trees

50

(1) Fran:
What’s the cause

of this bug?

(2) Ollie:
I think it’s a null

pointer.

(3) Fran:
No, I checked for

that.

(4) Kukla:
We need to

check valid input.

(5) Ollie:
Yes, that’s a bug.

(6) Fran:
Yes, please add a

check.

(7) Kukla:
That fixed it.

50Monday, April 20, 2009

Naive Trees

• Adjacency List

• Naive solution nearly everyone uses

• Each entry in the tree knows immediate parent

51

comment_id parent_id author comment

1 NULL Fran What’s the cause of this bug?

2 1 Ollie I think it’s a null pointer.

3 2 Fran No, I checked for that.

4 1 Kukla We need to check valid input.

5 4 Ollie Yes, that’s a bug.

6 4 Fran Yes, please add a check

7 6 Kukla That fixed it.

51Monday, April 20, 2009

Naive Trees

• Adjacency List

• Easy to inserting a new comment:

INSERT INTO Comments (parent_id, author, comment)
 VALUES (7, ‘Kukla’, ‘Thanks!’);

• Easy to move a subtree to a new position:

UPDATE Comments SET parent_id = 3
WHERE comment_id = 6;

52

52Monday, April 20, 2009

Naive Trees

• Adjacency List

• Querying a node’s immediate children is easy:

SELECT * FROM Comments c1
LEFT JOIN Comments c2
 ON (c2.parent_id = c1.comment_id);

• Querying a node’s immediate parent is easy:

SELECT * FROM Comments c1
JOIN Comments c2
 ON (c1.parent_id = c2.comment_id);

53

53Monday, April 20, 2009

Naive Trees

• Adjacency List

• Hard to query all descendants in a deep tree:

SELECT * FROM Comments c1
LEFT JOIN Comments c2 ON (c2.parent_id = c1.comment_id)
LEFT JOIN Comments c3 ON (c3.parent_id = c2.comment_id)
LEFT JOIN Comments c4 ON (c4.parent_id = c3.comment_id)
LEFT JOIN Comments c5 ON (c5.parent_id = c4.comment_id)
LEFT JOIN Comments c6 ON (c6.parent_id = c5.comment_id)
LEFT JOIN Comments c7 ON (c7.parent_id = c6.comment_id)
LEFT JOIN Comments c8 ON (c8.parent_id = c7.comment_id)
LEFT JOIN Comments c9 ON (c9.parent_id = c8.comment_id)
LEFT JOIN Comments c10 ON (c10.parent_id = c9.comment_id)
. . .

54

it still doesn’t support
unlimited depth!

54Monday, April 20, 2009

Naive Trees

• Solution #1: Path Enumeration

• Store chain of ancestors as a string in each node

• Good for breadcrumbs, or sorting by hierarchy

55

comment_id path author comment

1 1/ Fran What’s the cause of this bug?

2 1/2/ Ollie I think it’s a null pointer.

3 1/2/3/ Fran No, I checked for that.

4 1/4/ Kukla We need to check valid input.

5 1/4/5/ Ollie Yes, that’s a bug.

6 1/4/6/ Fran Yes, please add a check

7 1/4/6/7/ Kukla That fixed it.

55Monday, April 20, 2009

Naive Trees

• Solution #1: Path Enumeration

• Easy to query all ancestors of comment #7:

SELECT * FROM Comments
WHERE ‘1/4/6/7/’ LIKE path || ‘%’;

• Easy to query all descendants of comment #4:

SELECT * FROM Comments
WHERE path LIKE ‘1/4/%’;

56

56Monday, April 20, 2009

Naive Trees

• Solution #1: Path Enumeration

• Easy to add child of comment 7:

INSERT INTO Comments (author, comment)
VALUES (‘Ollie’, ‘Good job!’);

SELECT path FROM Comments
WHERE comment_id = 7;

UPDATE Comments
SET path = $parent_path || LAST_INSERT_ID() || ‘/’
WHERE comment_id = LAST_INSERT_ID();

57

57Monday, April 20, 2009

Naive Trees

• Solution #2: Nested Sets

• Each comment encodes its descendants
using two numbers:

• A comment’s right number is less than all the
numbers used by the comment’s descendants.

• A comment’s left number is greater than all the
numbers used by the comment’s descendants.

58

58Monday, April 20, 2009

Naive Trees

• Solution #2: Nested Sets

59

(1) Fran:
What’s the cause

of this bug?

(2) Ollie:
I think it’s a null

pointer.

(3) Fran:
No, I checked for

that.

(4) Kukla:
We need to check

valid input.

(5) Ollie:
Yes, that’s a bug.

(6) Fran:
Yes, please add a

check.

(7) Kukla:
That fixed it.

1

2

14

5

3 4

6 13

7 8 9 12

10 11

59Monday, April 20, 2009

Naive Trees

• Solution #2: Nested Sets

60

comment_id nsleft nsright author comment

1 1 14 Fran What’s the cause of this bug?

2 2 5 Ollie I think it’s a null pointer.

3 3 4 Fran No, I checked for that.

4 6 13 Kukla We need to check valid input.

5 7 8 Ollie Yes, that’s a bug.

6 9 12 Fran Yes, please add a check

7 10 11 Kukla That fixed it.

these are not
foreign keys

60Monday, April 20, 2009

Naive Trees

• Solution #2: Nested Sets

• Easy to query all ancestors of comment #7:

SELECT * FROM Comments child
JOIN Comments ancestor
 ON (child.left BETWEEN ancestor.nsleft
 AND ancestor.nsright)
WHERE child.comment_id = 7;

61

61Monday, April 20, 2009

Naive Trees

• Solution #2: Nested Sets

62

(1) Fran:
What’s the cause

of this bug?

(2) Ollie:
I think it’s a null

pointer.

(3) Fran:
No, I checked for

that.

(4) Kukla:
We need to check

valid input.

(5) Ollie:
Yes, that’s a bug.

(6) Fran:
Yes, please add a

check.

(7) Kukla:
That fixed it.

1

2

14

5

3 4

6 13

7 8 9 12

10 11

ancestors

child

62Monday, April 20, 2009

Naive Trees

• Solution #2: Nested Sets

• Easy to query all descendants of comment #4:

SELECT * FROM Comments parent
JOIN Comments descendant
 ON (descendant.left BETWEEN parent.nsleft
 AND parent.nsright)
WHERE parent.comment_id = 4;

63

63Monday, April 20, 2009

Naive Trees

• Solution #2: Nested Sets

64

(1) Fran:
What’s the cause

of this bug?

(2) Ollie:
I think it’s a null

pointer.

(3) Fran:
No, I checked for

that.

(4) Kukla:
We need to check

valid input.

(5) Ollie:
Yes, that’s a bug.

(6) Fran:
Yes, please add a

check.

(7) Kukla:
That fixed it.

1

2

14

5

3 4

6 13

7 8 9 12

10 11

parent

descendants

64Monday, April 20, 2009

Naive Trees

• Solution #2: Nested Sets

• Hard to insert a new child of comment #5:

UPDATE Comment
SETnsleft = CASE WHEN nsleft >= 8 THEN nsleft+2 ELSE nsleft END,
 nsright = nsright+2
WHERE nsright >= 7;

INSERT INTO Comment (nsleft, nsright, author, comment)
 VALUES (8, 9, 'Fran', 'I agree!');

• Recalculate left values for all nodes to the right of
the new child. Recalculate right values for all
nodes above and to the right.

65

65Monday, April 20, 2009

Naive Trees

• Solution #2: Nested Sets

66

(1) Fran:
What’s the cause

of this bug?

(2) Ollie:
I think it’s a null

pointer.

(3) Fran:
No, I checked for

that.

(4) Kukla:
We need to check

valid input.

(5) Ollie:
Yes, that’s a bug.

(6) Fran:
Yes, please add a

check.

(7) Kukla:
That fixed it.

1

2

14

5

3 4

6 13

7 8 9 12

10 11

(8) Fran:
I agree!

8 9

10 11

12 13

14

15

16

66Monday, April 20, 2009

Naive Trees

• Solution #2: Nested Sets

• Hard to query the parent of comment #6:

SELECT parent.* FROM Comments AS c
JOIN Comments AS parent
 ON (c.nsleft BETWEEN parent.nsleft AND parent.nsright)
LEFT OUTER JOIN Comments AS in_between
 ON (c.nsleft BETWEEN in_between.nsleft AND in_between.nsright
 AND in_between.nsleft BETWEEN parent.nsleft AND parent.nsright)
WHERE c.comment_id = 6 AND in_between.comment_id IS NULL;

• Parent of #6 is an ancestor who has no
descendant who is also an ancestor of #6.

• Querying a child is a similar problem.

67

67Monday, April 20, 2009

Naive Trees

• Solution #3: Closure Table

• Store every path from ancestors to descendants

• Requires an additional table:

CREATE TABLE TreePaths (
 ancestor BIGINT NOT NULL,
 descendant BIGINT NOT NULL,
 PRIMARY KEY (ancestor, descendant),
 FOREIGN KEY(ancestor) REFERENCES Comments(comment_id),
 FOREIGN KEY(descendant) REFERENCES Comments(comment_id),
);

68

68Monday, April 20, 2009

Naive Trees

• Solution #3: Closure Table

69

(1) Fran:
What’s the cause

of this bug?

(2) Ollie:
I think it’s a null

pointer.

(3) Fran:
No, I checked for

that.

(4) Kukla:
We need to check

valid input.

(5) Ollie:
Yes, that’s a bug.

(6) Fran:
Yes, please add a

check.

(7) Kukla:
That fixed it.

69Monday, April 20, 2009

Naive Trees

• Solution #3: Closure Table

70

comment_id author comment

1 Fran What’s the cause of this bug?

2 Ollie I think it’s a null pointer.

3 Fran No, I checked for that.

4 Kukla We need to check valid input.

5 Ollie Yes, that’s a bug.

6 Fran Yes, please add a check

7 Kukla That fixed it.

ancestor descendant

1 1

1 2

1 3

1 4

1 5

1 6

1 7

2 2

2 3

3 3

4 4

4 5

4 6

4 7

5 5

6 6

6 7

7 7

requires O(n²)
rows at most

but far fewer
in practice

70Monday, April 20, 2009

Naive Trees

• Solution #3: Closure Table

• Easy to query descendants of comment #4:

SELECT c.* FROM Comments c
JOIN TreePaths t
 ON (c.comment_id = t.descendant)
WHERE t.ancestor = 4;

71

71Monday, April 20, 2009

Naive Trees

• Solution #3: Closure Table

• Easy to query ancestors of comment #6:

SELECT c.* FROM Comments c
JOIN TreePaths t
 ON (c.comment_id = t.ancestor)
WHERE t.descendant = 6;

72

72Monday, April 20, 2009

Naive Trees

• Solution #3: Closure Table

• Easy to insert a new child of comment #5:

INSERT INTO Comments ...

INSERT INTO TreePaths (ancestor, descendant)
 VALUES (8, 8);

INSERT INTO TreePaths (ancestor, descendant)
 SELECT ancestor, 8 FROM TreePaths
 WHERE descendant = 5;

73

generates comment #8

73Monday, April 20, 2009

Naive Trees

• Solution #3: Closure Table

• Easy to delete a child comment #7:

DELETE FROM TreePaths
WHERE descendant = 7;

• Even easier with ON DELETE CASCADE

74

74Monday, April 20, 2009

Naive Trees

• Solution #3: Closure Table

• Easy to delete the subtree under comment #4:

DELETE FROM TreePaths WHERE descendant IN
 (SELECT descendant FROM TreePaths
 WHERE ancestor = 4);

• For MySQL, use multi-table DELETE:

DELETE p FROM TreePaths p
JOIN TreePaths a USING (descendant)
WHERE a.ancestor = 4;

75

75Monday, April 20, 2009

Naive Trees

• Solution #3: Closure Table

• Add a depth column to make it
easier to query immediate parent
or child:

SELECT c.* FROM Comments c
JOIN TreePaths t
 ON (c.comment_id = t.descendant)
WHERE t.ancestor = 4
 AND t.depth = 1;

76

ancestor descendant depth

1 1 0

1 2 1

1 3 2

1 4 1

1 5 2

1 6 2

1 7 3

2 2 0

2 3 1

3 3 0

4 4 0

4 5 1

4 6 1

4 7 2

5 5 0

6 6 0

6 7 1

7 7 0

76Monday, April 20, 2009

Naive Trees

• Summary of Designs:

77

Design
Number of

Tables
Query
Child

Query
Subtree

Modify
Tree

Referential
Integrity

Adjacency List 1 Easy Hard Easy Yes

Path
Enumeration

1 Easy Easy Hard No

Nested Sets 1 Hard Easy Hard No

Closure Table 2 Easy Easy Easy Yes

77Monday, April 20, 2009

Antipattern Categories

Database Design
Antipatterns

Database Creation
Antipatterns

Query
Antipatterns

Application
Antipatterns

CREATE TABLE BugsProducts (
 bug_id INTEGER REFERENCES Bugs,
 product VARCHAR(100) REFERENCES Products,
 PRIMARY KEY (bug_id, product)
);

SELECT b.product, COUNT(*)
FROM BugsProducts AS b
GROUP BY b.product;

$dbHandle = new PDO(‘mysql:dbname=test’);
$stmt = $dbHandle->prepare($sql);
$result = $stmt->fetchAll();

78

78Monday, April 20, 2009

Database Creation Antipatterns

5. ENUM Antipattern

6. Rounding Errors

7. Indexes Are Magical

79

79Monday, April 20, 2009

ENUM Antipattern

80

80Monday, April 20, 2009

ENUM Antipattern

• Objective: restrict a column
to a fixed set of values

INSERT INTO bugs (status)
 VALUES (‘new’)

INSERT INTO bugs (status)
 VALUES (‘banana’)

81

OK

FAIL

81Monday, April 20, 2009

ENUM Antipattern

• Antipattern: use ENUM data type,
when the set of values may change

CREATE TABLE Bugs (
 . . .
 status ENUM(‘new’, ‘open’, ‘fixed’)
);

82

82Monday, April 20, 2009

ENUM Antipattern

• Changing the set of values is a metadata
alteration

• You must know the current set of values

ALTER TABLE Bugs MODIFY COLUMN
 status ENUM(‘new’, ‘open’, ‘fixed’, ‘duplicate’);

83

83Monday, April 20, 2009

ENUM Antipattern

• Difficult to get a list of possible values

SELECT column_type
FROM information_schema.columns
WHERE table_schema = ‘bugtracker_schema’
 AND table_name = ‘Bugs’
 AND column_name = ‘status’;

• Returns a LONGTEXT you must parse:

“ENUM(‘new’, ‘open’, ‘fixed’)”

84

84Monday, April 20, 2009

ENUM Antipattern

• Solution: use ENUM only if values are
set in stone

CREATE TABLE Bugs (
 . . .
 bug_type ENUM(‘defect’, ‘feature’)
);

85

85Monday, April 20, 2009

ENUM Antipattern

• Use a lookup table if values may change

CREATE TABLE BugStatus (
 status VARCHAR(10) PRIMARY KEY
);

INSERT INTO BugStatus (status)
 VALUES (‘NEW’), (‘OPEN’), (‘FIXED’);

86

BUGSTATUSBUGS

86Monday, April 20, 2009

ENUM Antipattern

• Adding/removing a value is a data
operation, not a metadata operation

• You don’t need to know the current values

INSERT INTO BugStatus (status)
 VALUES (‘DUPLICATE’);

87

87Monday, April 20, 2009

ENUM Antipattern

• Use an attribute to retire values, not
DELETE

CREATE TABLE BugStatus (
 status VARCHAR(10) PRIMARY KEY,
 active TINYINT NOT NULL DEFAULT 1
);

UPDATE BugStatus
SET active = 0
WHERE status = ‘DUPLICATE’;

88

88Monday, April 20, 2009

Rounding Errors

89

10.0 times 0.1 is hardly ever 1.0.
— Brian Kernighan

89Monday, April 20, 2009

Rounding Errors

• Objective: store real numbers exactly

• Especially money

• Work estimate hours

90

90Monday, April 20, 2009

Rounding Errors

• Antipattern: use FLOAT data type

ALTER TABLE Bugs
 ADD COLUMN hours FLOAT;

INSERT INTO Bugs (bug_id, hours)
 VALUES (1234, 3.3);

91

91Monday, April 20, 2009

Rounding Errors

• FLOAT is inexact

SELECT hours FROM Bugs
WHERE bug_id = 1234;

‣ 3.3

SELECT hours * 1000000000 FROM Bugs
WHERE bug_id = 1234;

‣ 3299999952.3163

92

92Monday, April 20, 2009

Rounding Errors

• Inexact decimals

• 1/3 + 1/3 + 1/3 = 1.0

• 0.333 + 0.333 + 0.333 = 0.999

93

assuming infinite precision

finite precision

93Monday, April 20, 2009

Rounding Errors

• IEEE 754 standard for representing
floating-point numbers in base-2

• Some numbers round off, aren’t stored exactly

• Comparisons to original value fail

SELECT * FROM Bugs
WHERE hours = 3.3;

94

comparison
fails

94Monday, April 20, 2009

Rounding Errors

• Solution: use NUMERIC data type

ALTER TABLE Bugs
 ADD COLUMN hours NUMERIC(9,2)

INSERT INTO bugs (bug_id, hours)
 VALUES (1234, 3.3);

SELECT * FROM Bugs
WHERE hours = 3.3;

95

comparison
succeeds

95Monday, April 20, 2009

Indexes are Magical

96

Whenever any result is sought, the question will then
arise — by what course of calculation can these results

be arrived at by the machine in the shortest time?
— Charles Babbage

96Monday, April 20, 2009

Indexes are Magical

• Objective: execute queries with optimal
performance

97

97Monday, April 20, 2009

Indexes are Magical

• Antipatterns:

• Creating indexes blindly

• Executing non-indexable queries

• Rejecting indexes because of their overhead

98

98Monday, April 20, 2009

Indexes are Magical

• Creating indexes blindly:

CREATE TABLE Bugs (
 bug_id SERIAL PRIMARY KEY,
 date_reported DATE NOT NULL,
 summary VARCHAR(80) NOT NULL,
 status VARCHAR(10) NOT NULL,
 hours NUMERIC(9,2),
 INDEX (bug_id),
 INDEX (summary),
 INDEX (hours),
 INDEX (bug_id, date_reported, status)
);

99

redundant index

bulky index

unnecessary index

unnecessary
covering index

99Monday, April 20, 2009

Indexes are Magical

• Executing non-indexable queries:

• SELECT * FROM Bugs
WHERE description LIKE ‘%crash%’;

• SELECT * FROM Bugs
WHERE MONTH(date_reported) = 4;

• SELECT * FROM Bugs
WHERE last_name = “...” OR first_name = “...”;

• SELECT * FROM Accounts
ORDER BY first_name, last_name;

100

non-leftmost
string match

function applied
to column

non-leftmost
composite key match

no index spans
all rows

100Monday, April 20, 2009

Indexes are Magical

• Telephone book analogy

• Easy to search for Dean Thomas:

SELECT * FROM TelephoneBook
WHERE full_name LIKE ‘Thomas, %’;

• Hard to search for Thomas Riddle:

SELECT * FROM TelephoneBook
WHERE full_name LIKE ‘%, Thomas’;

101

uses index
to match

requires full
table scan

101Monday, April 20, 2009

• Rejecting indexes because of their overhead:

Indexes are Magical

102

0

20

40

60

80

0 100 200 300 400 500 600 700 800 9001000

Query w/ Index: O(log n)
Update Index: O(log n)
Query w/o Index: O(n)

the benefit quickly
justifies the overhead

102Monday, April 20, 2009

Indexes are Magical

• Solution: “MENTOR” your indexes

Measure
Explain
Nominate
Test
Optimize
Repair

103

103Monday, April 20, 2009

Indexes are Magical

• Solution: “MENTOR” your indexes

Measure
Explain
Nominate
Test
Optimize
Repair

104

• Profile your application.

• Focus on the most costly
SQL queries:

• Longest-running.

• Most frequently run.

• Blockers, lockers, and
deadlocks.

104Monday, April 20, 2009

Indexes are Magical

• Solution: “MENTOR” your indexes

Measure
Explain
Nominate
Test
Optimize
Repair

105

• Analyze the optimization
plan of costly queries,
e.g. MySQL’s EXPLAIN

• Identify tables that aren’t
using indexes:

• Temporary table

• Filesort

105Monday, April 20, 2009

Indexes are Magical

• Solution: “MENTOR” your indexes

Measure
Explain
Nominate
Test
Optimize
Repair

106

• Could an index improve
access to these tables?

• ORDER BY criteria

• MIN() / MAX()

• WHERE conditions

• Which column(s) need
indexes?

106Monday, April 20, 2009

Indexes are Magical

• Solution: “MENTOR” your indexes

Measure
Explain
Nominate
Test
Optimize
Repair

107

• After creating index,
measure again.

• Confirm the new index
made a difference.

• Impress your boss!
“The new index gave a 27%
performance improvement!”

107Monday, April 20, 2009

Indexes are Magical

• Solution: “MENTOR” your indexes

Measure
Explain
Nominate
Test
Optimize
Repair

108

• Indexes are compact,
frequently-used data.

• Try to cache indexes in
memory:
• MyISAM: key_buffer_size,

LOAD INDEX INTO CACHE

• InnoDB: innodb_buffer_pool_size

108Monday, April 20, 2009

Indexes are Magical

• Solution: “MENTOR” your indexes

Measure
Explain
Nominate
Test
Optimize
Repair

109

• Indexes require periodic
maintenance.

• Like a filesystem requires
periodic defragmentation.

• Analyze or rebuild
indexes, e.g. in MySQL:

• ANALYZE TABLE

• OPTIMIZE TABLE

109Monday, April 20, 2009

Indexes are Magical

• Solution: “MENTOR” your indexes

• Sounds like the name
of a “self-help” book!

110

MENTOR
YOUR

INDEXES
How to Break the

Bad Performance Habits
That Make

You Miserable

BY THE AUTHOR OF THE BESTSELLER

WHY DOESN’T MY CACHE GET ANY HITS?

William K. Karwin

just kidding!
please don’t ask

when it’s coming out!

110Monday, April 20, 2009

Antipattern Categories

Database Design
Antipatterns

Database Creation
Antipatterns

Query
Antipatterns

Application
Antipatterns

CREATE TABLE BugsProducts (
 bug_id INTEGER REFERENCES Bugs,
 product VARCHAR(100) REFERENCES Products,
 PRIMARY KEY (bug_id, product)
);

SELECT b.product, COUNT(*)
FROM BugsProducts AS b
GROUP BY b.product;

$dbHandle = new PDO(‘mysql:dbname=test’);
$stmt = $dbHandle->prepare($sql);
$result = $stmt->fetchAll();

111

111Monday, April 20, 2009

Query Antipatterns

8. NULL antipatterns

9. Ambiguous Groups

10. Random Order

11. JOIN antipattern

12. Goldberg Machine

112

112Monday, April 20, 2009

NULL Antipatterns

113

 As we know, there are known knowns; there are things we know
we know. We also know there are known unknowns; that is to say

we know there are some things we do not know. But there are also
unknown unknowns — the ones we don't know we don't know.

— Donald Rumsfeld

113Monday, April 20, 2009

NULL Antipatterns

• Objective: handle “missing” values,
store them as missing, and support them in
queries.

114

114Monday, April 20, 2009

NULL Antipatterns

• Antipatterns:

• Use NULL as an ordinary value

• Use an ordinary value as NULL

115

115Monday, April 20, 2009

NULL Antipatterns

• Using NULL in most expressions results in
an unknown value.

SELECT NULL + 10;

SELECT ‘Bill’ || NULL;

SELECT FALSE OR NULL;

116

NULL is not zero

NULL is not an empty string

NULL is not FALSE

116Monday, April 20, 2009

NULL Antipatterns

• The opposite of unknown is still unknown.

SELECT * FROM Bugs
WHERE assigned_to = 123;

SELECT * FROM Bugs
WHERE NOT (assigned_to = 123);

117

which query returns bugs
that are not yet assigned?

neither query!

117Monday, April 20, 2009

NULL Antipatterns

• Choosing an ordinary value in lieu of NULL:

UPDATE Bugs SET assigned_to = -1
WHERE assigned_to IS NULL;

118

assigned_to is a foreign key
so this value doesn’t work

118Monday, April 20, 2009

NULL Antipatterns

• Choosing an ordinary value in lieu of NULL:

UPDATE Bugs SET hours = -1
WHERE hours IS NULL;

SELECT SUM(hours)
FROM Bugs
WHERE status = ‘OPEN’

119

this makes SUM()
inaccurate

AND hours <> -1;

special-case code
you were trying to avoid

by prohibiting NULL

119Monday, April 20, 2009

NULL Antipatterns

• Choosing an ordinary value in lieu of NULL:

• Any given value may be significant in a column

• Every column needs a different value

• You need to remember or document the value
used for “missing” on a case-by-case basis

120

120Monday, April 20, 2009

NULL Antipatterns

• Solution: use NULL appropriately

• NULL signifies “missing” or “inapplicable”

• Works for every data type

• Already standard and well-understood

121

121Monday, April 20, 2009

NULL Antipatterns

• Understanding NULL in expressions

122

Expression Expected Actual

NULL = 0 TRUE Unknown

NULL = 12345 FALSE Unknown

NULL <> 12345 TRUE Unknown

NULL + 12345 12345 Unknown

NULL || ‘string’ string’ Unknown

NULL = NULL TRUE Unknown

NULL <> NULL FALSE Unknown

122Monday, April 20, 2009

NULL Antipatterns

• Understanding NULL in boolean expressions

123

Expression Expected Actual

NULL AND TRUE FALSE Unknown

NULL AND FALSE FALSE FALSE

NULL OR FALSE FALSE Unknown

NULL OR TRUE TRUE TRUE

NOT (NULL) TRUE Unknown

123Monday, April 20, 2009

NULL Antipatterns

• SQL supports IS NULL predicate that
returns true or false, never unknown:

SELECT * FROM Bugs
WHERE assigned_to IS NULL;

SELECT * FROM Bugs
WHERE assigned_to IS NOT NULL;

124

124Monday, April 20, 2009

NULL Antipatterns

• SQL-99 supports IS DISTINCT FROM
predicate that returns true or false:

SELECT * FROM Bugs
WHERE assigned_to IS DISTINCT FROM 123;

SELECT * FROM Bugs
WHERE assigned_to IS NOT DISTINCT FROM 123;

125

MySQL operator works like
IS NOT DISTINCT FROM

SELECT * FROM Bugs
WHERE assigned_to <=> 123;

125Monday, April 20, 2009

NULL Antipatterns

• Change NULL to ordinary value on demand
with COALESCE():

SELECT COALESCE(
 first_name || ‘ ’ || middle_initial || ‘ ’ || last_name,
 first_name || ‘ ’ || last_name) AS full_name
FROM Accounts;

• Also called NVL() or ISNULL()
in some database brands.

126

126Monday, April 20, 2009

Ambiguous Groups

127

Please accept my resignation. I don’t want to belong
to any club that will accept me as a member.

— Groucho Marx

127Monday, April 20, 2009

Ambiguous Groups

• Objective: perform grouping queries, and
include some attributes in the result

SELECT product_name, bug_id,
 MAX(date_reported) AS latest
FROM Bugs
GROUP BY product_name;

128

128Monday, April 20, 2009

• Antipattern: bug_id isn’t that of the
latest per product

Ambiguous Groups

product_name bug_id latest

Open RoundFile 1234 2008-04-01

Visual TurboBuilder 3456 2008-02-16

ReConsider 5678 2008-01-01

product_name bug_id date_reported

Open RoundFile 1234 2007-12-19

Open RoundFile 2248 2008-04-01

Visual TurboBuilder 3456 2008-02-16

Visual TurboBuilder 4077 2008-02-10

ReConsider 5678 2008-01-01

ReConsider 8063 2007-11-09

129

129Monday, April 20, 2009

Ambiguous Groups

SELECT product_name, bug_id,
 MAX(date_reported) AS latest
FROM Bugs
GROUP BY product_name;

130

assume bug_id from
the same row with

MAX(date_reported)

130Monday, April 20, 2009

Ambiguous Groups

SELECT product_name, bug_id,
 MAX(date_reported) AS latest
FROM Bugs
GROUP BY product_name;

131

what if two bug_id
both match the

latest date?

131Monday, April 20, 2009

Ambiguous Groups

SELECT product_name, bug_id,
 MIN(date_reported) AS earliest,
 MAX(date_reported) AS latest
FROM Bugs
GROUP BY product_name;

132

what bug_id
has both the earliest
and the latest date?

132Monday, April 20, 2009

Ambiguous Groups

SELECT product_name, bug_id,
 AVG(date_reported) AS mean
FROM Bugs
GROUP BY product_name;

133

what if no bug_id
matches this date?

133Monday, April 20, 2009

Ambiguous Groups

• The Single-Value Rule: every column
in the select-list must be either:

• Part of an aggregate expression.

• In the GROUP BY clause.

• A functional dependency of a column
named in the GROUP BY clause.

134

134Monday, April 20, 2009

Ambiguous Groups

• For a given product_name, there is a single
value in each functionally dependent attribute.

135

product_name bug_id date_reported

Open RoundFile 1234 2007-12-19

Open RoundFile 2248 2008-04-01

Visual TurboBuilder 3456 2008-02-16

Visual TurboBuilder 4077 2008-02-10

ReConsider 5678 2008-01-01

ReConsider 8063 2007-11-09

multiple values per
product name

bug_id is not
functionally dependent

135Monday, April 20, 2009

Ambiguous Groups

• Solution #1: use only functionally
dependent attributes:

SELECT product_name, bug_id,
 MAX(date_reported) AS latest
FROM Bugs
GROUP BY product_name;

136

product_name latest

Open RoundFile 2008-04-01

Visual TurboBuilder 2008-02-16

ReConsider 2008-01-01

✘

136Monday, April 20, 2009

Ambiguous Groups

• Solution #2: use a derived table:

SELECT b.product_name, b.bug_id, m.latest
FROM Bugs b
JOIN (SELECT product_name, MAX(date_reported) AS latest
 FROM Bugs GROUP BY product_name) m
 ON (b.product_name = m.product_name
 AND b.date_reported = m.latest);

137

product_name bug_id latest

Open RoundFile 2248 2008-04-01

Visual TurboBuilder 3456 2008-02-16

ReConsider 5678 2008-01-01

137Monday, April 20, 2009

Ambiguous Groups

• Solution #3: use an outer JOIN:

SELECT b1.product_name, b1.bug_id,
 b1.date_reported AS latest
FROM Bugs b1LEFT OUTER JOIN Bugs b2
 ON (b1.product_name = b2.product_name
 AND b1.date_reported < b2.date_reported)
WHERE b2.bug_id IS NULL;

138

product_name bug_id latest

Open RoundFile 2248 2008-04-01

Visual TurboBuilder 3456 2008-02-16

ReConsider 5678 2008-01-01

138Monday, April 20, 2009

Ambiguous Groups

• Solution #4: use another aggregate:

SELECT product_name, MAX(date_reported) AS latest,
 MAX(bug_id) AS latest_bug_id
FROM Bugs
GROUP BY product_name;

139

product_name bug_id latest

Open RoundFile 2248 2008-04-01

Visual TurboBuilder 3456 2008-02-16

ReConsider 5678 2008-01-01

if bug_id increases
in chronological order

139Monday, April 20, 2009

Ambiguous Groups

• Solution #5: use GROUP_CONCAT():

SELECT product_name,
 GROUP_CONCAT(bug_id) AS bug_id_list,
 MAX(date_reported) AS latest
FROM Bugs
GROUP BY product_name;

140

product_name bug_id_list latest

Open RoundFile 1234, 2248 2008-04-01

Visual TurboBuilder 3456, 4077 2008-02-16

ReConsider 5678, 8063 2008-01-01

140Monday, April 20, 2009

Random Order

141

I must complain the cards are ill shuffled till I have a good hand.
— Jonathan Swift

141Monday, April 20, 2009

Random Order

• Objective: select a random row

142

142Monday, April 20, 2009

Random Order

• Antipattern: sort by random expression,
then return top row(s)

SELECT * FROM Bugs
ORDER BY RAND()
LIMIT 1;

143

non-indexed sort
in a temporary table

sort entire table
just to discard it?

143Monday, April 20, 2009

Random Order

• Solution #1: pick random primary key
from list of all values:

$bug_id_list = $pdo->query(
 ‘SELECT bug_id FROM Bugs’)->fetchAll();

$rand = random(count($bug_id_list));

$stmt = $pdo->prepare(
 ‘SELECT * FROM Bugs WHERE bug_id = ?’);
$stmt->execute($bug_id_list[$rand][0]);
$rand_bug = $stmt->fetch();

144

144Monday, April 20, 2009

Random Order

• Solution #1: pick random primary key
from list of all values:

$bug_id_list = $pdo->query(
 ‘SELECT bug_id FROM Bugs’)->fetchAll();

• $bug_id_list may grow to an impractical size:

Fatal error: Allowed memory size of 16777216 bytes exhausted

145

145Monday, April 20, 2009

Random Order

• Solution #2: pick random value between
1...MAX(bug_id); use that bug_id:

SELECT b1.* FROM Bugs b1
JOIN (SELECT CEIL(RAND() *
 (SELECT MAX(bug_id) FROM Bugs)) rand_id) b2
 ON (b1.bug_id = b2.rand_id);

146

146Monday, April 20, 2009

Random Order

• Solution #2: pick random value between
1...MAX(bug_id); use that bug_id:

• Assumes bug_id starts at 1
and values are contiguous.

• If there are gaps, a random
bug_id may not match an
existing bug.

147

147Monday, April 20, 2009

Random Order

• Solution #3: pick random value between
1...MAX(bug_id); use next higher bug_id:

SELECT b1.* FROM Bugs b1
JOIN (SELECT CEIL(RAND() *
 (SELECT MAX(bug_id) FROM Bugs)) AS bug_id) b2
WHERE b1.bug_id >= b2.bug_id
ORDER BY b1.bug_id
LIMIT 1;

148

148Monday, April 20, 2009

Random Order

• Solution #3: pick random value between
1...MAX(bug_id); use next higher bug_id:

• bug_id values after gaps
are chosen more often.

• Random values are evenly
distributed, but bug_id values aren’t.

149

149Monday, April 20, 2009

Random Order

• Solution #4: pick random row from
0...COUNT, regardless of bug_id values:

$offset = $pdo->query(
 ‘SELECT ROUND(RAND() *
 (SELECT COUNT(*) FROM Bugs))’)->fetch();

$sql = ‘SELECT * FROM Bugs LIMIT 1 OFFSET ?’;

$stmt = $pdo->prepare($sql);

$stmt->execute($offset);

150

150Monday, April 20, 2009

JOIN Antipattern

151

151Monday, April 20, 2009

JOIN Antipattern

• Objective: Design optimal queries.

152

152Monday, April 20, 2009

JOIN Antipattern

• Antipatterns:

• Senseless avoidance of JOIN.

• Overzealous JOIN decomposition.

• “Joins are slow!”

153

compared
to what?

153Monday, April 20, 2009

JOIN Antipattern

• Reasons for JOIN decomposition:

• Cache and reuse earlier results

• Reduce locking across multiple tables

• Distribute tables across servers

• Leverage IN() optimization

• Reduce redundant rows
(result sets are denormalized)

• Notice these are exception cases!

154

borrowed
from this book

154Monday, April 20, 2009

JOIN Antipattern

• Example from the web (2009-4-18):

SELECT *,
 (SELECT name FROM stores WHERE id = p.store_id) AS store_name,
 (SELECT username FROM stores WHERE id = p.store_id) AS store_username,
 (SELECT region_id FROM stores WHERE id = p.store_id) AS region_id,
 (SELECT city_id FROM stores WHERE id = p.store_id) AS city_id,
 (SELECT name FROM categories_sub WHERE id=p.subcategory_id) subcat_name,
 (SELECT name FROM categories WHERE id = p.category_id) AS category_name
FROM products p
WHERE p.date_start <= DATE(NOW()) AND p.date_end >= DATE(NOW());

155

six correlated
subqueries!

how to apply
conditions to stores?

optimizer can’t
reorder JOINs

155Monday, April 20, 2009

JOIN Antipattern

• Example revised with JOINs:

SELECT p.*, s.name AS store_name, s.username AS store_username,
 s.region_id, s.city_id, cs.name AS subcategory_name,
 c.name AS category_name
FROM products p
 JOIN stores s ON (s.id = p.store_id)
 JOIN categories c ON (c.id = p.category_id)
 JOIN categories_sub cs ON (cs.id = p.subcategory_id)
WHERE p.date_start <= DATE(NOW()) AND p.date_end >= DATE(NOW())

156

 AND s.store_category = ‘preferred’;

easier to
apply conditions

easier to
optimize

156Monday, April 20, 2009

JOIN Antipattern

• Example: find an entry with three tags:
HAVING COUNT solution:
SELECT b.*
FROM Bugs b
 JOIN BugsProducts p ON (b.bug_id = p.bug_id)
WHERE p.product_id IN (1, 2, 3)
GROUP BY b.bug_id
HAVING COUNT(*) = 3;

157

must match all
three products

157Monday, April 20, 2009

JOIN Antipattern

• Example: find an entry with three tags::
multiple-JOIN solution:
SELECT DISTINCT b.*
FROM Bugs b
 JOIN BugsProducts p1 ON ((p1.bug_id, p1.product_id) = (b.bug_id, 1))
 JOIN BugsProducts p2 ON ((p2.bug_id, p2.product_id) = (b.bug_id, 2))
 JOIN BugsProducts p3 ON ((p3.bug_id, p3.product_id) = (b.bug_id, 3));

158

three joins is slower
than one, right?

not if indexes
are used well

158Monday, April 20, 2009

JOIN Antipattern

• Solution:

• JOIN is to SQL as while() is to other languages.

• One-size-fits-all rules (e.g. “joins are slow”)
don’t work.

• Measure twice, query once.

• Let the SQL optimizer work.

• Employ alternatives (e.g. JOIN decomposition)
as exception cases.

159

159Monday, April 20, 2009

Goldberg Machine

160

Enita non sunt multiplicanda praeter necessitatem
(“Entities are not to be multiplied beyond necessity”).

— William of Okham

160Monday, April 20, 2009

Goldberg Machine

• Objective: Generate a complex report as
efficiently as possible.

161

161Monday, April 20, 2009

Goldberg Machine

• Example: Calculate for each account:

• Count of bugs reported by user.

• Count of products the user has been assigned to.

• Count of comments left by user.

162

162Monday, April 20, 2009

Goldberg Machine

• Antipattern: Try to generate all the
information for the report in a single query:
SELECT a.account_name,
 COUNT(br.bug_id) AS bugs_reported,
 COUNT(bp.product_id) AS products_assigned,
 COUNT(c.comment_id) AS comments
FROM Accounts a
 LEFT JOIN Bugs br ON (a.account_id = br.reported_by)
 LEFT JOIN (Bugs ba JOIN BugsProducts bp ON (ba.bug_id = bp.bug_id))
 ON (a.account_id = ba.assigned_to)
 LEFT JOIN Comments c ON (a.account_id = c.author)
GROUP BY a.account_id;

163

expected: 2

expected: 4

expected: 3

163Monday, April 20, 2009

Goldberg Machine

• Expected result versus actual result:

164

account name bugs reported
products
assigned

comments

Bill 3 2 448 48 48

FAIL FAILFAIL

164Monday, April 20, 2009

Goldberg Machine

• Run query without GROUP BY:
SELECT a.account_name,
 br.bug_id AS bug_reported,
 ba.bug_id AS bug_assigned,
 bp.product_id AS product_assigned
 c.comment_id
FROM Accounts a
 LEFT JOIN Bugs br ON (a.account_id = br.reported_by)
 LEFT JOIN (Bugs ba JOIN BugsProducts bp ON (ba.bug_id = bp.bug_id))
 ON (a.account_id = ba.assigned_to)
 LEFT JOIN Comments c ON (a.account_id = c.author);

165

165Monday, April 20, 2009

Goldberg Machine

• Query result reveals a Cartesian Product:

166

account
name

bug
reported

bug
assigned

product
assigned

comment

Bill 1234 1234 1 6789

Bill 1234 1234 1 9876

Bill 1234 1234 1 4365

Bill 1234 1234 1 7698

Bill 1234 1234 3 6789

Bill 1234 1234 3 9876

Bill 1234 1234 3 4365

Bill 1234 1234 3 7698

166Monday, April 20, 2009

Goldberg Machine

• Query result reveals a Cartesian Product:

167

account
name

bug
reported

bug
assigned

product
assigned

comment

Bill 1234 5678 1 6789

Bill 1234 5678 1 9876

Bill 1234 5678 1 4365

Bill 1234 5678 1 7698

Bill 1234 5678 3 6789

Bill 1234 5678 3 9876

Bill 1234 5678 3 4365

Bill 1234 5678 3 7698

167Monday, April 20, 2009

Goldberg Machine

• Query result reveals a Cartesian Product:

168

account
name

bug
reported

bug
assigned

product
assigned

comment

Bill 2345 1234 1 6789

Bill 2345 1234 1 9876

Bill 2345 1234 1 4365

Bill 2345 1234 1 7698

Bill 2345 1234 3 6789

Bill 2345 1234 3 9876

Bill 2345 1234 3 4365

Bill 2345 1234 3 7698

168Monday, April 20, 2009

Goldberg Machine

• Query result reveals a Cartesian Product:

169

account
name

bug
reported

bug
assigned

product
assigned

comment

Bill 2345 5678 1 6789

Bill 2345 5678 1 9876

Bill 2345 5678 1 4365

Bill 2345 5678 1 7698

Bill 2345 5678 3 6789

Bill 2345 5678 3 9876

Bill 2345 5678 3 4365

Bill 2345 5678 3 7698

169Monday, April 20, 2009

Goldberg Machine

• Query result reveals a Cartesian Product:

170

account
name

bug
reported

bug
assigned

product
assigned

comment

Bill 3456 1234 1 6789

Bill 3456 1234 1 9876

Bill 3456 1234 1 4365

Bill 3456 1234 1 7698

Bill 3456 1234 3 6789

Bill 3456 1234 3 9876

Bill 3456 1234 3 4365

Bill 3456 1234 3 7698

170Monday, April 20, 2009

Goldberg Machine

• Query result reveals a Cartesian Product:

171

account
name

bug
reported

bug
assigned

product
assigned

comment

Bill 3456 5678 1 6789

Bill 3456 5678 1 9876

Bill 3456 5678 1 4365

Bill 3456 5678 1 7698

Bill 3456 5678 3 6789

Bill 3456 5678 3 9876

Bill 3456 5678 3 4365

Bill 3456 5678 3 7698

171Monday, April 20, 2009

Goldberg Machine

• Visualizing a Cartesian Product:

172

bugs
reported

bugs
assigned

products
assigned

3 × 4 × 4 = 48

each assigned bug
applies to 2 products

comments

Bugs BugsProducts

Comments

Accounts

Bugs

172Monday, April 20, 2009

Goldberg Machine

• Solution: Write separate queries.
SELECT a.account_name, COUNT(br.bug_id) AS bugs_reported
FROM Accounts a LEFT JOIN Bugs br ON (a.account_id = br.reported_by)
GROUP BY a.account_id;

SELECT a.account_name,
 COUNT(DISTINCT bp.product_id) AS products_assigned,
FROM Accounts a LEFT JOIN
 (Bugs ba JOIN BugsProducts bp ON (ba.bug_id = bp.bug_id))
 ON (a.account_id = ba.assigned_to)
GROUP BY a.account_id;

SELECT a.account_name, COUNT(c.comment_id) AS comments
FROM Accounts a LEFT JOIN Comments c ON (a.account_id = c.author)
GROUP BY a.account_id;

173

result: 3

result: 2

result: 4

173Monday, April 20, 2009

Antipattern Categories

Database Design
Antipatterns

Database Creation
Antipatterns

Query
Antipatterns

Application
Antipatterns

CREATE TABLE BugsProducts (
 bug_id INTEGER REFERENCES Bugs,
 product VARCHAR(100) REFERENCES Products,
 PRIMARY KEY (bug_id, product)
);

SELECT b.product, COUNT(*)
FROM BugsProducts AS b
GROUP BY b.product;

$dbHandle = new PDO(‘mysql:dbname=test’);
$stmt = $dbHandle->prepare($sql);
$result = $stmt->fetchAll();

174

174Monday, April 20, 2009

Application Antipatterns

13. Parameter Facade

14. Phantom Side Effects

15. See No Evil

16. Diplomatic Immunity

17. Magic Beans

175

175Monday, April 20, 2009

Parameter Facade

176

176Monday, April 20, 2009

Parameter Facade

• Objective: include application variables in
SQL statements

SELECT * FROM Bugs
WHERE bug_id IN ($id_list);

177

177Monday, April 20, 2009

Parameter Facade

• Antipattern: Trying to use parameters
for complex syntax

178

178Monday, April 20, 2009

Parameter Facade

• Interpolation can modify syntax

$list = ‘1234, 3456, 5678’

SELECT * FROM Bugs
WHERE bug_id IN ($list);

SELECT * FROM Bugs
WHERE bug_id IN (1234, 3456, 5678);

179

three values
separated by commas

179Monday, April 20, 2009

Parameter Facade

• A parameter is always a single value

$list = ‘1234, 3456, 5678’

SELECT * FROM Bugs
WHERE bug_id IN (?);

EXECUTE USING $list;

SELECT * FROM Bugs
WHERE bug_id IN (‘1234, 3456, 5678’);

180

one string value

180Monday, April 20, 2009

Parameter Facade

• Interpolation can specify identifiers

$column = ‘bug_id’

SELECT * FROM Bugs
WHERE $column = 1234;

SELECT * FROM Bugs
WHERE bug_id = 1234;

181

column identifier

181Monday, April 20, 2009

Parameter Facade

• A parameter is always a single value

$column = ‘bug_id’;

SELECT * FROM Bugs
WHERE ? = 1234;

EXECUTE USING $column;

SELECT * FROM Bugs
WHERE ‘bug_id’ = 1234;

182

one string value

182Monday, April 20, 2009

Parameter Facade

• Interpolation risks SQL injection

$id = ‘1234 or 1=1’;

SELECT * FROM Bugs
WHERE bug_id = $id;

SELECT * FROM Bugs
WHERE bug_id = 1234 or 1=1;

183

logical
expression

183Monday, April 20, 2009

Parameter Facade

• A parameter is always a single value

$id = ‘1234 or 1=1’;

SELECT * FROM Bugs
WHERE bug_id = ?;

EXECUTE USING $id;

SELECT * FROM Bugs
WHERE bug_id = ‘1234 or 1=1’;

184

one string value

184Monday, April 20, 2009

Parameter Facade

• Preparing a SQL statement:

• Parses SQL syntax

• Optimizes execution plan

• Retains parameter placeholders

185

185Monday, April 20, 2009

Parameter Facade

query

SELECT

FROM

WHERE

expr-list *

simple-table

expr

bugs

parameter
placeholder

?

bug_id

=equality

186

186Monday, April 20, 2009

Parameter Facade

• Executing a prepared statement

• Combines a supplied value for each parameter

• Doesn’t modify syntax, tables, or columns

• Runs query

187

could invalidate
optimization plan

187Monday, April 20, 2009

Parameter Facade

query

SELECT

FROM

WHERE

expr-list *

simple-table

expr

bugs

1234

bug_id

=equality

supplied
value

188

188Monday, April 20, 2009

Parameter Facade

query

SELECT

FROM

WHERE

expr-list *

simple-table

expr

bugs

1234
or 1=1

bug_id

=equality

supplied
value

189

189Monday, April 20, 2009

Parameter Facade

• Interpolating into a query string

• Occurs in the application, before SQL is parsed

• Database server can’t tell what part is dynamic

190

190Monday, April 20, 2009

Parameter Facade

query

SELECT

FROM

WHERE

expr-list *

simple-table

expr

bugs

1234

bug_id

=equality

intended
value

191

191Monday, April 20, 2009

Parameter Facade

query

SELECT

FROM

WHERE

expr-list *

simple-table

expr

1234

bugs

bug_id

=equality

1

1

=equality

OR

192

SQL injection

192Monday, April 20, 2009

Parameter Facade

• The Bottom Line:

• Interpolation may change the shape of the tree

• Parameters cannot change the tree

• Parameter nodes may only be values

193

193Monday, April 20, 2009

Parameter Facade

• Example: IN predicate

SELECT * FROM bugs
WHERE bug_id IN (?);

SELECT * FROM bugs
WHERE bug_id IN (?, ?, ?, ?);

194

must supply
exactly four values

may supply
only one value

194Monday, April 20, 2009

Parameter Facade

195

Scenario Value Interpolation Parameter

single value ‘1234’ SELECT * FROM bugs
WHERE bug_id = $id;

SELECT * FROM bugs
WHERE bug_id = ?;

multiple values ‘1234, 3456, 5678’ SELECT * FROM bugs
WHERE bug_id IN ($list);

SELECT * FROM bugs
WHERE bug_id IN (?, ?, ?);

column name ‘bug_id’ SELECT * FROM bugs
WHERE $column = 1234; NO

table name ‘bugs’ SELECT * FROM $table
WHERE bug_id = 1234; NO

other syntax ‘bug_id = 1234’ SELECT * FROM bugs
WHERE $expr; NO

195Monday, April 20, 2009

Parameter Facade

• Solution:

• Use parameters only for individual values

• Use interpolation for dynamic SQL syntax

• Be careful to prevent SQL injection

196

196Monday, April 20, 2009

Phantom Side Effects

197

Every program attempts to expand until it can read mail.
— Jamie Zawinsky

197Monday, April 20, 2009

Phantom Side Effects

• Objective: execute application tasks
with database operations

INSERT INTO Bugs . . .

...and send email to notify me

198

198Monday, April 20, 2009

Phantom Side Effects

• Antipattern: execute external effects in
database triggers, stored procedures, and
functions

199

199Monday, April 20, 2009

Phantom Side Effects

• External effects don’t obey ROLLBACK

1. Start transaction and INSERT

200

bug_id description

insert row
bug_id = 1234

notify of
bug_id 1234

200Monday, April 20, 2009

Phantom Side Effects

• External effects don’t obey ROLLBACK

2. ROLLBACK

201

bug_id description

discard
row

I got email,
but no row

1234?

201Monday, April 20, 2009

Phantom Side Effects

• External effects don’t obey transaction
isolation

1. Start transaction and INSERT

202

bug_id description

insert row
bug_id = 1234

notify of
bug_id 1234

202Monday, April 20, 2009

Phantom Side Effects

• External effects don’t obey transaction
isolation

2. Email is received before row is visible

203

bug_id description

row
pending
commit

I got email,
but no row

1234?

203Monday, April 20, 2009

Phantom Side Effects

• External effects run as database server user

• Possible security risk

SELECT * FROM bugs
WHERE bug_id = 1234
 OR send_email(‘Buy cheap Rolex watch!’);

• Auditing/logging confusion

204

SQL injection

204Monday, April 20, 2009

Phantom Side Effects

• Functions may crash

SELECT pk_encrypt(description,
 ‘/nonexistant/private.ppk’)
FROM Bugs
WHERE bug_id = 1234;

205

missing file
causes fatal error

205Monday, April 20, 2009

Phantom Side Effects

• Long-running functions delay query

• Accessing remote resources

• Unbounded execution time

SELECT libcurl_post(description,
 ‘http://myblog.org/ . . .’)
FROM Bugs
WHERE bug_id = 1234;

206

unresponsive
website

206Monday, April 20, 2009

http://www.planetmysql.org/rss20.xml

Phantom Side Effects

• Solution:

• Operate only on database in triggers, stored
procedures, database functions

• Wait for transaction to commit

• Perform external actions in application code

207

207Monday, April 20, 2009

See No Evil

208

Everyone knows that debugging is twice as hard as writing
a program in the first place. So if you’re as clever as you

can be when you write it, how will you ever debug it?
— Brian Kernighan

208Monday, April 20, 2009

See No Evil

• Objective: Debug errors in queries.

209

209Monday, April 20, 2009

See No Evil

• Antipatterns:

• Ignore errors in return status or exceptions.

• Troubleshoot code that builds queries.

210

210Monday, April 20, 2009

See No Evil

• Ignoring errors in return status:

$sql = “SELECT * FROM Bugs”;

$result = $mysqli->query($sql);

$rows = $result->fetch_all();

211

OK

211Monday, April 20, 2009

See No Evil

• Ignoring errors in return status:

$sql = “SELECT * FROM Bugz”;

$result = $mysqli->query($sql);

$rows = $result->fetch_all();

212

FAIL

returns FALSE

212Monday, April 20, 2009

See No Evil

• Ignoring exceptions:

$sql = “SELECT * FROM Bugz”;

$stmt = $pdo->query($sql);

$rows = $stmt->fetchAll();

213

NOT
REACHED

throws PDOException

213Monday, April 20, 2009

See No Evil

• Solution: check for error status.

$sql = “SELECT * FROM Bugz”;

$result = $mysqli->query($sql);

if ($result === FALSE) {
 log($mysqli->error());
 return FALSE;
}

$rows = $result->fetchAll();

214

don’t let it go this far!

214Monday, April 20, 2009

See No Evil

• Solution: handle exceptions.

$sql = “SELECT * FROM Bugz”;

try {
 $stmt = $pdo->query($sql);
} catch (PDOException $e) {
 log($stmt->errorInfo());
 return FALSE;
}

$rows = $stmt->fetchAll();

215

don’t let it go this far!

215Monday, April 20, 2009

See No Evil

• Troubleshooting code:

$sql = ‘SELECT * FROM Bugs
 WHERE summary LIKE \’%’
 . $mysqli->quote($feature)
 . ‘ doesn\’t work 50\% of the time!%\’’;

$result = $mysqli->query($sql);

$rows = $result->fetchAll();

216

who wants to
read this!?

216Monday, April 20, 2009

See No Evil

• Solution: Look at the SQL, not the code!

$sql = ‘SELECT * FROM Bugs
 WHERE summary LIKE \’%’
 . $mysqli->quote($feature)
 . ‘ doesn\’t work 50\% of the time!%\’’;

$firephp = FirePHP::getInstance(true);
$firephp->log($sql, ‘SQL’);

$result = $mysqli->query($sql);

$rows = $result->fetchAll();

217

the error
is now clear!

217Monday, April 20, 2009

Diplomatic Immunity

218

Humans are allergic to change. They love to say,
“We’ve always done it this way.” I try to fight that.

— Adm. Grace Murray Hopper

218Monday, April 20, 2009

Diplomatic Immunity

• Objective: Employ software development
“best practices.”

219

219Monday, April 20, 2009

Diplomatic Immunity

• Antipattern: Belief that database
development is “different” — software
development best practices don’t apply.

220

220Monday, April 20, 2009

Diplomatic Immunity

• Solution: Employ best practices, just like
in conventional application coding.

• Functional testing

• Documentation

• Source code control

221

221Monday, April 20, 2009

Diplomatic Immunity

• Functional testing

Tables, Views,
Columns

Constraints

Triggers

Stored Procedures

Bootstrap Data

Queries

ORM Classes

222

• Verify presence of
tables and views.

• Verify they contain
columns you expect.

• Verify absence of
tables, views, or
columns that you
dropped.

222Monday, April 20, 2009

Diplomatic Immunity

• Functional testing

Tables, Views,
Columns

Constraints

Triggers

Stored Procedures

Bootstrap Data

Queries

ORM Classes

223

• Try to execute updates
that ought to be denied
by constraints.

• You can catch bugs
earlier by identifying
constraints that are
failing.

223Monday, April 20, 2009

Diplomatic Immunity

• Functional testing

Tables, Views,
Columns

Constraints

Triggers

Stored Procedures

Bootstrap Data

Queries

ORM Classes

224

• Triggers can enforce
constraints too.

• Triggers can perform
cascading effects,
transform values, log
changes, etc.

• You should test these
scenarios.

224Monday, April 20, 2009

Diplomatic Immunity

• Functional testing

Tables, Views,
Columns

Constraints

Triggers

Stored Procedures

Bootstrap Data

Queries

ORM Classes

225

• Code is more easily
developed, debugged,
and maintained in the
application layer.

• Nevertheless, stored
procedures are useful,
e.g. solving tough
bottlenecks.

• You should test stored
procedure code.

225Monday, April 20, 2009

Diplomatic Immunity

• Functional testing

Tables, Views,
Columns

Constraints

Triggers

Stored Procedures

Bootstrap Data

Queries

ORM Classes

226

• Lookup tables need to
be filled, even in an
“empty” database.

• Test that the required
data are present.

• Other cases exist for
initial data.

226Monday, April 20, 2009

Diplomatic Immunity

• Functional testing

Tables, Views,
Columns

Constraints

Triggers

Stored Procedures

Bootstrap Data

Queries

ORM Classes

227

• Application code is
laced with SQL queries.

• Test queries for result
set metadata, e.g.
columns, data types.

• Test performance; good
queries can become
bottlenecks, as data and
indexes grow.

227Monday, April 20, 2009

Diplomatic Immunity

• Functional testing

Tables, Views,
Columns

Constraints

Triggers

Stored Procedures

Bootstrap Data

Queries

ORM Classes

228

• Like Triggers, ORM
classes contain logic:

• Validation.

• Transformation.

• Monitoring.

• You should test these
classes as you would
any other code.

228Monday, April 20, 2009

Diplomatic Immunity

• Documentation

Entity Relation-
ship Diagram

Tables, Columns

Relationships

Views, Triggers

Stored Procedures

SQL Privileges

Application Code

229

229Monday, April 20, 2009

Diplomatic Immunity

• Documentation

Entity-Relationship
Diagram

Tables, Columns

Relationships

Views, Triggers

Stored Procedures

SQL Privileges

Application Code

230

• Purpose of each table,
each column.

• Constraints, rules that
apply to each.

• Sample data.

• List the Views, Triggers,
Procs, Applications, and
Users that use each.

230Monday, April 20, 2009

Diplomatic Immunity

• Documentation

Entity-Relationship
Diagram

Tables, Columns

Relationships

Views, Triggers

Stored Procedures

SQL Privileges

Application Code

231

• Describe in text the
dependencies between
tables.

• Business rules aren’t
represented fully by
declarative constraints.

231Monday, April 20, 2009

Diplomatic Immunity

• Documentation

Entity-Relationship
Diagram

Tables, Columns

Relationships

Views, Triggers

Stored Procedures

SQL Privileges

Application Code

232

• Purpose of Views;
who uses them.

• Usage of updatable
Views.

• Business rules enforced
by Triggers:

• Validation

• Transformation

• Logging

232Monday, April 20, 2009

Diplomatic Immunity

• Documentation

Entity-Relationship
Diagram

Tables, Columns

Relationships

Views, Triggers

Stored Procedures

SQL Privileges

Application Code

233

• Document the Stored
Procedures as an API.

• Especially side-effects.

• What problem is the
procedure solving?

• Encapsulation

• Performance

• Privileged access

233Monday, April 20, 2009

Diplomatic Immunity

• Documentation

Entity-Relationship
Diagram

Tables, Columns

Relationships

Views, Triggers

Stored Procedures

SQL Privileges

Application Code

234

• Logins with specific
access purposes
(e.g. backup, reports).

• Sets of privileges
(roles) used for
different scenarios.

• Security measures.

234Monday, April 20, 2009

Diplomatic Immunity

• Documentation

Entity-Relationship
Diagram

Tables, Columns

Relationships

Views, Triggers

Stored Procedures

SQL Privileges

Application Code

235

• Data Access Layer:

• Connection params.

• Client options.

• Driver versions.

• Object-Relational
Mapping (ORM):

• Validations, Logging,
Transformations.

• Special find() methods.

235Monday, April 20, 2009

Diplomatic Immunity

• Source code control

• Keep database in synch with application code.

• Commit portable “.SQL” files, not binaries.

• Create a separate database instance for each
working set (each branch or revision you test).

• Also commit bootstrap data and test data
to source control.

236

236Monday, April 20, 2009

Diplomatic Immunity

• Source code control: “Migrations.”

• Migrations are like version-control for the
database instance.

• Incremental scripts for each milestone.

• “Upgrade” script to apply new changes
(e.g. CREATE new tables).

• “Downgrade” script to revert changes
(e.g. DROP new tables).

• Database instance includes a “revision” table.

237

237Monday, April 20, 2009

Magic Beans

238

Essentially, all models are wrong, but some are useful.
— George E. P. Box

238Monday, April 20, 2009

Magic Beans

• Objective: simplify application
development using Object-Relational
Mapping (ORM) technology.

239

239Monday, April 20, 2009

Magic Beans

• Antipattern: equating “Model” in MVC
architecture with the Active Record pattern.

• The Golden Hammer of data access.

• “Model” used inaccurately in MVC frameworks:

240

240Monday, April 20, 2009

Magic Beans

• Antipattern: Model is-a Active Record.

241

Active
Record
Active
Record

BugsProducts Comments

inheritance (IS-A)

aggregation (HAS-A)

Controller View

241Monday, April 20, 2009

Magic Beans

• Bad object-oriented design:

• “Model” Active Record

• Models tied to database structure.

• Can a Product associate to a Bug,
or does a Bug associate to a Product?

• Models expose general-purpose
Active Record interface,
not model-specific interface.

242

inheritance (IS-A)

unclear assignment
of responsibilities

poor encapsulation

inappropriate
coupling

242Monday, April 20, 2009

Magic Beans

• Bad Model-View-Controller design

• Controller needs to know database structure.

• Database changes cause code changes.

• “Anemic Domain Model,” contrary to OO design.
http://www.martinfowler.com/bliki/AnemicDomainModel.html

• Pushing Domain-layer code into Application-layer,
contrary to Domain-Driven Design.
http://domaindrivendesign.org/

243

not “DRY”

“T.M.I.” !!

243Monday, April 20, 2009

http://www.martinfowler.com/bliki/AnemicDomainModel.html
http://www.martinfowler.com/bliki/AnemicDomainModel.html
http://domaindrivendesign.org
http://domaindrivendesign.org

Magic Beans

• Bad testability design

• Model coupled to Active Record;
harder to test Model without database.

• Database “fixtures” become necessary.

• Business logic pushed to Controller;
harder to test Controller code.

244

tests are
slow

mocking HTTP Request,
scraping HTML output

tests are
even slower

244Monday, April 20, 2009

Magic Beans

• Solution: Model has-a Active Record(s).

245

BugReport
(Model)

ViewController

Products Comments

Active
Record

Bugs

inheritance (IS-A)

aggregation (HAS-A)

composition (HAS-A)

245Monday, April 20, 2009

Magic Beans

• Solution: Model has-a Active Record(s).

• Models expose only domain-specific interface.

• Models encapsulate complex business logic.

• Models abstract the persistence implementation.

• Controllers and Views are unaware of database.

246

246Monday, April 20, 2009

Magic Beans

• Solution: Model has-a Active Record(s).

• Models are decoupled from Active Record.

• Supports mock objects.

• Supports dependency injection.

• Unit-testing Models in isolation is easier & faster.

• Unit-testing thinner Controllers is easier.

247

247Monday, April 20, 2009

Magic Beans

• Solution: Model has-a Active Record(s).

• It’s possible to follow this design,
even in MVC frameworks that assume
that Model is-a Active Record.

248

248Monday, April 20, 2009

Antipattern Categories

Database Design
Antipatterns

Database Creation
Antipatterns

Query
Antipatterns

Application
Antipatterns

CREATE TABLE BugsProducts (
 bug_id INTEGER REFERENCES Bugs,
 product VARCHAR(100) REFERENCES Products,
 PRIMARY KEY (bug_id, product)
);

SELECT b.product, COUNT(*)
FROM BugsProducts AS b
GROUP BY b.product;

$dbHandle = new PDO(‘mysql:dbname=test’);
$stmt = $dbHandle->prepare($sql);
$result = $stmt->fetchAll();

249

249Monday, April 20, 2009

Thank You
Copyright 2008-2009 Bill Karwin

www.karwin.com
Released under a Creative Commons 3.0 License:
http://creativecommons.org/licenses/by-nc-nd/3.0/

You are free to share - to copy, distribute and
transmit this work, under the following conditions:

Attribution.
You must attribute this
work to Bill Karwin.

Noncommercial.
You may not use this work
for commercial purposes.

No Derivative Works.
You may not alter,
transform, or build

upon this work.

250Monday, April 20, 2009

http://www.karwin.com
http://www.karwin.com
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

